All Admissible Meromorphic Solutions of Hayman’s Equation
نویسندگان
چکیده
We find all nonrational meromorphic solutions of the equation ww′′ − (w′)2 = α(z)w + β(z)w′ + γ (z), where α, β, and γ are rational functions of z. In so doing, we answer a question of Hayman by showing that all such solutions have finite order. Apart from special choices of the coefficient functions, the general solution is not meromorphic and contains movable branch points. For some choices for the coefficient functions, the equation admits a one-parameter family of nonrational meromorphic solutions. Nevanlinna theory is used to show that all such solutions have been found and allows us to avoid issues that can arise from the fact that resonances can occur at arbitrarily high orders. We actually solve the more general problem of finding all meromorphic solutions that are admissible in the sense of Nevanlinna theory, where the coefficients α, β, and γ are meromorphic functions.
منابع مشابه
On meromorphic solutions of certain type of difference equations
We mainly discuss the existence of meromorphic (entire) solutions of certain type of non-linear difference equation of the form: $f(z)^m+P(z)f(z+c)^n=Q(z)$, which is a supplement of previous results in [K. Liu, L. Z. Yang and X. L. Liu, Existence of entire solutions of nonlinear difference equations, Czechoslovak Math. J. 61 (2011), no. 2, 565--576, and X. G. Qi...
متن کاملHayman Admissible Functions in Several Variables
Abstract. An alternative generalisation of Hayman’s admissible functions ([17]) to functions in several variables is developed and a multivariate asymptotic expansion for the coefficients is proved. In contrast to existing generalisations of Hayman admissibility ([7]), most of the closure properties which are satisfied by Hayman’s admissible functions can be shown to hold for this class of func...
متن کاملOn the meromorphic solutions of an equation of Hayman
The behavior of meromorphic solutions of differential equations has been the subject of much study. Research has concentrated on the value distribution of meromorphic solutions and their rates of growth. The purpose of the present paper is to show that a thorough search will yield a list of all meromorphic solutions of a multi-parameter ordinary differential equation introduced by Hayman. This ...
متن کاملGrowth of meromorphic solutions for complex difference equations of Malmquist type
In this paper, we give some necessary conditions for a complex difference equation of Malmquist type $$sum^n_{j=1}f(z+c_j)=frac{P(f(z))}{Q(f(z))},$$ where $n(in{mathbb{N}})geq{2}$, and $P(f(z))$ and $Q(f(z))$ are relatively prime polynomials in $f(z)$ with small functions as coefficients, admitting a meromorphic function of finite order. Moreover, the properties of finite o...
متن کاملMeromorphic traveling wave solutions of the Kuramoto–Sivashinsky equation
We determine all cases when there exists a meromorphic solution of the ODE νw + bw + μw + w/2 +A = 0. This equation describes traveling waves solutions of the KuramotoSivashinsky equation. It turns out that there are no other meromorphic solutions besides those explicit solutions found by Kuramoto and Kudryashov. The general method used in this paper, based on Nevanlinna theory, is applicable t...
متن کامل